Solution-Mid-Exam 2011-2012

(1). (i) If X is the union of path-connected open sets U, each containing
the basepoint xzp € X and if each intersection U, N Uz is path-connected,
then the homomorphism

O xom (Uy) = m(X)

is surjective. If in addition each intersection U, N Uz N U, is path-connected,
then the kernel of ® is the normal subgroup N generated by all elements of
the form

o (@)iza(@)
for w € m(Uy N Up), where iq, : m (U, N U,) — m(U,) is the homomor-
phism induced by the inclusion ¢ : U, N U, — U,, and hence ¢ induces an
isomorphism

m(X) = xqm (Us)/N.

(ii) We will use the Seifert-van Kampen Theorem to calculate the funda-
mental group. Let U, V' C X be as pictured (with the end points being
open).

Since U NV is contractible, then its fundamental group is trivial. this makes
our calculation easier since we get that our normal subgroup N from the
theorem is also trivial. U is homotopy equivalent to the figure eight, so

7T1(U, ZEQ) =7 7.



Also, V is homotopy equivalent to S, so m(V,z¢) = Z. This tells us that
the pushout of U and V is Z x Z % Z (since * is associative). Thus m; of the
3-bouquet of circles is Z * Z * 7.

To generalize we simply set U and V to be the as above, where V' is still ho-
motopy equivalent to S, but U is homotopy equivalent to the (n—1)-bouquet
of circles. This still gives us that U NV is contractible, so by induction the
fundamental group of the n-bouquet is Z * ... x Z (n times).

We can also show that Z x ... * Z (n times) is the free group on n generators,
Denote F,. We first use the universal property of a free group. Let Y be
the set {1, x9,...,x,} and define f : X — Z x ... %« Z (n times) as f(x;) = z
where z; is the generator from the ith copy of Z. Since F,, is free we have
that there exist a homomorphism g : F,, — Z*...*Z (n times) such that the
following diagram commutes:

Z*..x17

or f = goi. Also g is bijective on the generators of each group, so it is
bijective on the entire sets. Now define

f1:m(U,xg) =Z* ...« Z (n— 1 times) — F,

as fi(z;) = x; for i = 1,..., n — 1 where the x;s are generators of F),. also
define

fg : 7T1(V,.Z‘0) =7 — Fn
with fo(1) = z,,. Since Z x ... x Z (n times) is a pushout then there exist a

homomorphism
h:Zx..xZ (ntimes) — F,

such that h(m(71)) = f1 and h(mi(j2)) = f2, where j; : U — X and jo : V —
X are inclusions map. On the generators,
goh(z) =g(x;) =z

and

hog(x;) = h(z) = x;,



So g and h are inverses. Therefore

Z*...xZ (n times) = F,.

(iii) Let X C R3 be the union of m lines through the origin. Consider the
homotopy:

flz) = (1 —t)m+t|z—|.

Then f; : R — X — R3 — X defines S* — {x1, s, ..., Top } as a deformation

retract of R® — X, where x;, . . .29, are the 2m points in the intersection
X N'S%. Therefore

7T1(R3 — X) = ’71'1(82 — {ZL’l,CL’Q, ...7$2m}).

S? without %k points is homeomorphic to R? without k& — 1 points, and this
space has the homotopy type of the wedge sum of k — 1 copies of S'. Hence:

mR? — X) = m(S* — {1, 22, ..., Tom}) = m(R? — {y1, 92, s Yom—1}) =
TStV .. VSY) 2 Zx ... xZ (2n — 1 times).

(2). (i) Two covering projections, p; : Yi_—> X, i = 1,2, are said to be
equivalent if there is a homeomorphism f : X1 — X5 such that py o f = p;.

(ii) Given two covering projections p : £ — B and p : E' — B’ with p(eg) =
p'(ey) = by, suppose f : E — E’ is an equivalence such that f(ey) = ef.
Then, since f is a homeomorphism, we have

fe(mi(E,eq)) = m(E ep).

Therefore,
P«(m1(E, eq)) = pl(m(E', e)).

Conversely, suppose

pe(mi(E, eq)) = n ' pl(mi(E', eg))n,

for some element 1 € m(B,by). Let A be a path in E’ such that A(0) = ej,
[p' o A] = n and e}, = A(1).Then we have

N7 m (B )] = mi (', €p).



Therefore, it follows that

Pu(m(E eh)) = 'pu(m(E, e4))n = pu(mi(E, ).

By applying the lifting criterion, either way, we get maps f : £ — E’ and
g: E'" — FE such that p’ o f = pand pog =p’ and f(ey) = e, g(ep) = eo.
Now p'o fog=pand fo g(%) = %. Therefore, by Unique Lifting Property,
we have f og = idg. Likewise, we see g o f = idg. Therefore f (and g)
defines an equivalence of p and p’.

(iii) The subgroup of Z x Z generated by two elements (m,0) and (0,n) is
isomorphic to Z x Z, so we might guess that the covering space is T = S! x S*
itself. By taking the covering map

21 X 29 = 21" X 25,

we see that the generators corresponding to (1,0) and (0, 1) in 71 (7") map to
m x 0 and 0 x n, respectively. Thus this is the correct covering space.

(3). (i) Let p: X — X be a covering map. We call T : X — X a covering
transformation if (i) 7" is a homeomorphism and (ii) p = poT'. The set of all
covering transformations forms a group under function composition, which
is called the automorphism (Deck transformation) group Cov(X/X).

(ii) For [a] € N(H) and y € E we define ¢(|c)(y) as follows: choose any
continuous path f : [0,1] — F with f(0) = e and f(1) =g. Let a: [0,1] —
E be the lift of a : [0,1] — X with a(0) = ¢y and let f":[0,1] — E be the
lift of po f:[0,1] — B with f’(0) = &(1). We define

¢([e)) (@) = f'(1).
We have to show that
(a) ¢ is well-defined;
(b) ¢([a]) € Cov(E/B);
(c) ¢
(d) ¢

is a homomorphism;

is onto;



(e) kero = H.

(a): We wish to show that the definition of ¢ is independent of the choice of
f. To this end, let ¢ : [0, 1] — E be another continuous path with ¢g(0) = e
and ¢g(1) = g. It is our goal to show that f'(1) = ¢’(1). Put z = a(1), then

[&]_lﬁl(E, 60)[&] = 7T1(E, 5)
Applying p. to this equation, we get

[a] "' pu(m1(E, o)) [0] = pu(mi(E, 2)).

However, by assumption,

(o] 'pu(m1(E, €0))[0] = pu(m(E, ).

so that
p«(m(E, 2)) = pu(m1(E, €0)).

This means that the elements of (B, by) which lift to loops at ey are the
same as those which lift to loops at z. Consequently,

po (f-g7)] € pu(mi(E, e0)) = pu(mi(E, 7).

In other words,

po(fg )] =lpon]
for some v : [0,1] — E with v(0) = (1) = z. From Unique Lifting Prop-
erty, we have that (po f)(pog!) lifts to some loop at z. Since f’ and ¢’ are
the unique lifts of po f and pog at z, respectively, we must have f'(1) = ¢'(1).

(b): First of all note that, by definition, we have

po¢([a))(®m) = p(f(1) =p(f(1)) = p(®).

If N is an elementary neighborhood of y = p(y) and U; and U, the path com-
ponents of p~! (V) containing 5 and ¢([a])(y), respectively, we get ¢([a])(U;) =
U,. To see this, all we have to do is choose the path f in the definition of
o(la])(w) for w € Uy to always begin with the same path f running from
f(0) = ey to f(1) = y and concatenate it with a path A running from
h(0) = gy to h(1) = w which stays in U;. This observation yields continuity
of ¢([a]). Also, it is clear that ¢([a]™!) is the inverse of ¢([a]). In summary,



¢([a]) € Cou(E/B).
(c): Let [o], [8] € N(H) and § € E. Let &, 3 : [0,1] — E be the lifts of the
paths, «, §:[0,1] — B with

a(0) = B(0) = e,

respectively. Choose a path f : [0,1] — E from f(0)

1’ be the lift of po f with f'(0) = B(1). Then ¢([a])(7)
the lift of po 8 = B with

to f(1) = g. Let
f(1). Let B be

€0

B'(0) = a(1).

Then @ - 3 is the lift of a3 : [0,1] — B which starts at eg. Let f” be the lift
of po f with

f1(0)=a-pg'(1) =pg'(1).
Then, by definition,
¢([a] = [8])(y) = ¢([a - B))(m) = f"(1).

On the other hand, 5 f" is now the lift of po (5 f’) with begins at a(1), so
that

([a)) o &([8) () = d([a])(f'(1) = B - f'(1) = f"(1).
Hence,

¢([a] * [B]) = ¢([a]) o &([5])

and ¢ is indeed a homomorphism.

(d): Let T' € Cov(E/B). Choose any continuous path « : [0,1] — E with
a(0) =eg and a(l) = T(eg). Put @ = poa. Then
a(0) = poa(0) = p(eo) = bo

and

a(l) =poa(l) = p(T(eo)) = pleo) = bo.
Therefore, [a] € m(B,b). In fact, [a] € N(H). To see why, first recall from
Part (a) above that

[a] ' pu(mi(E, e9))[a] = pu(mi(E, T(eo))). (1)



On the other hand, since T': E — E is a homeomorphism, we know that it
induces an isomorphism

T, :m(E,ep) — m(E,T(eg)).
Consequently

pe(mi(E, e0)) = (po T)u(m(E, e0)) = pu(Tu(mi(E, €))) = pu(m (E, T(@o))(é)

Combining Equations (1) and (2) we get

(o] 'pu(m1(E, e0))[0] = p.(mi(E, ),

which says that [a] € N(H).
If now y € E and f : [0,1] — FE is any path with f(0) = ¢y and f(1) = 7,
consider f' =T o f. Since

pof'=po(Tof)=(poT)of=pof,

we see that f’ is the lift of p o f with f/(0) = T o f(0) = T(eg) = a(1).
Therfore,
o([e)) (@) = f'(1) =T(f(1)) = T(7).

Hence, T = ¢([a]), proving that ¢ is onto.

(e): Finally, ¢([a]) = idg if and only if f(1) = f’(1), which by unique path
lifting can only occur when f = f’, that is, when a(0) = a(1). This is the
case precisely when « lifts to a loop at eq, i.e., when [a] € p.(m(E,e)) = H.
So, the kernel of ¢ equals H.

(iii) Consider the quotient map ¢ : S* — RP". We show that ¢ is a covering
projection. Let U; be an open subset of S” not containing a pair of anti-podal

points and

Uy ={—z/x € Up}.
Then, ¢(U;) = q(Us). Denoting these images by U, we see that ¢~ '(U) =
U; U Uy which is an open set in S"™ and so U is open in RP". Second, ¢
maps each of U; and U, bijectively onto U. To see that ¢ maps each of U;
and U; homeomorphically onto U, we merely have to show that ¢ is an open
mapping. So let V] be an open subset of U; and Vo = {—z|x € V;}. Then

g (q(V1) =ViUV,



is open in S™ so that ¢(V}) is an open subset of RP". Thus we have shown
that g restricted to each U; is an open mapping and that suffices for a proof.

We now show that
Cou(S"/RP") = Z,.

This follows from part (b) and using the facts that 71 (S™) = 1 and m; (RP") =
Zs.

(4) (i) Let X be a topolological space, G < Homeo(X) a group of homeo-
morphisms on X. G is said to act properly discontinuous (p.d.) on X if for
every x € X, there is a neighborhood, U, of z, such that gU, N U, = () for
every g € G with g # Idg.

(ii) We first show that 7 is an open map. Let U C X be open; we need to
show 7(U) is open in X/G. Since X/G has the quotient topology, m(U) is
open in X/G if and only if 77! (7(U)) is open in X. Following the definition
of m, we have
nH(@(U) = J gU
geG

Since each g € G is a homeomorphism of X, gU is open for every g, so
71 (w(U)) is open in X. We now prove the < direction. The assumption is
that G acts p.d. on X. We need to show that 7 is a covering map. Toward
this end, let [z] € X/G be fixed arbitrarily. Define U to be a neighborhood
of z, for some choice of x € [z], witnessing the p.d.-ness of G’s action. The
following properties of 7 are easily checked:

e 7(U) is a neighborhood of [z].
e {gU},cq is a disjoint, open decomposition of 7 (7(U)).
e Ty IS a continuous, open, surjective map.

It therefore remains to verify that w4 is one-to-one. Toward this end, let x4,
x9 € U such that 7(gzy) = m(gz2). Then we have [z1] = [gx1] = [gz2] = [22]
in X/G. So let ¢ € G such that x; = gx,. Since we have z; € U and
gxo € gU, this implies U N gU is nonempty, and thus g = Id, and therefore
that gzr; = gxy. This concludes the proof of the <= direction. To prove the
= direction, we are assuming that 7 is a covering map, and must show that



the action of G on X is p.d. Let x € X be arbitrary, and let V be a neigh-
borhood of 7(z) which is evenly covered by 7. Let U,U, witness this even
covering. Let ag be such that x € U,. It is easily derived from the definition
of m that, for each «, there is g € G such that gU,, = U, . Thus it suffices to
show that if gU,, N U,, is nonempty, then g = Idg. If y € gU,, N U,,, then
we have 7(y) = [y] = [¢"'y] = 7(¢7'y), where y, g~y are in U,,. So since
MU, 18 a homeomorphism and in particular injective, we have y = g ty. In
other words, if gU,, N U,, is nonempty, then g has a fixed point. But since
m = mog for every g € G, we have that g € Cov(X/(X/QG)), so in particular
g has no fixed points unless g = Idg. This concludes the proof of the =
direction of the if-and-only-if part of the theorem.

We now prove the final two statements of the theorem, starting with the
implication that, if 7 is a covering map, then G = Cov(X/(X/G)). We
have already shown (in the preceding paragraph) that G < Cov(X/(X/Q)),
so it suffices to show that Cov(X/(X/G)) < G. Toward this end, let
h € Cov(X/(X/@)), and let x € X be any point. Since we have [h(x)] =
w(h(z)) = w(x) = [z], it follows that there is ¢ € G with gx = h(x). But
g € Cov(X/(X/@)), so g~'h fixes z, and thus g~*h = Id, so h = g, and in
particular h € G. Thus Cov(X/(X/G)) = G when 7 is a covering map.

To prove that 7 is a regular covering, we know that it suffices to show that
G acts transitively on the fibers of 7. So let =, y € 7 '([z]). Then [z] = [y],
so x = gy for some g € G, proving transitivity.



