
Solution-Mid-Exam 2011-2012

(1). (i) If X is the union of path-connected open sets Uα each containing
the basepoint x0 ∈ X and if each intersection Uα ∩ Uβ is path-connected,
then the homomorphism

Φ : ∗απ1(Uα)→ π1(X)

is surjective. If in addition each intersection Uα ∩Uβ ∩Uγ is path-connected,
then the kernel of Φ is the normal subgroup N generated by all elements of
the form

iαβ(ω)iβα(ω)−1

for ω ∈ π1(Uα ∩ Uβ), where iab : π1(Ua ∩ Ub) → π1(Ua) is the homomor-
phism induced by the inclusion i : Ua ∩ Ub ↪→ Ua, and hence Φ induces an
isomorphism

π1(X) ∼= ∗απ1(Uα)/N.

(ii) We will use the Seifert-van Kampen Theorem to calculate the funda-
mental group. Let U , V ⊆ X be as pictured (with the end points being
open).

Since U ∩V is contractible, then its fundamental group is trivial. this makes
our calculation easier since we get that our normal subgroup N from the
theorem is also trivial. U is homotopy equivalent to the figure eight, so

π1(U, x0) = Z ∗ Z.



Also, V is homotopy equivalent to S1, so π1(V, x0) = Z. This tells us that
the pushout of U and V is Z ∗ Z ∗ Z (since ∗ is associative). Thus π1 of the
3-bouquet of circles is Z ∗ Z ∗ Z.

To generalize we simply set U and V to be the as above, where V is still ho-
motopy equivalent to S1, but U is homotopy equivalent to the (n−1)-bouquet
of circles. This still gives us that U ∩ V is contractible, so by induction the
fundamental group of the n-bouquet is Z ∗ ... ∗ Z (n times).

We can also show that Z ∗ ... ∗Z (n times) is the free group on n generators,
Denote Fn. We first use the universal property of a free group. Let Y be
the set {x1, x2, ..., xn} and define f : X → Z ∗ ... ∗ Z (n times) as f(xi) = zi
where zi is the generator from the ith copy of Z. Since Fn is free we have
that there exist a homomorphism g : Fn → Z ∗ ... ∗Z (n times) such that the
following diagram commutes:

X
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f

$$
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g

��
Z ∗ ... ∗ Z

or f = g ◦ i. Also g is bijective on the generators of each group, so it is
bijective on the entire sets. Now define

f1 : π1(U, x0) = Z ∗ ... ∗ Z (n− 1 times)→ Fn

as f1(zi) = xi for i = 1,..., n − 1 where the xis are generators of Fn. also
define

f2 : π1(V, x0) = Z→ Fn

with f2(1) = xn. Since Z ∗ ... ∗ Z (n times) is a pushout then there exist a
homomorphism

h : Z ∗ ... ∗ Z (n times)→ Fn

such that h(π1(j1)) = f1 and h(π1(j2)) = f2, where j1 : U → X and j2 : V →
X are inclusions map. On the generators,

g ◦ h(zi) = g(xi) = zi

and
h ◦ g(xi) = h(zi) = xi,



So g and h are inverses. Therefore

Z ∗ ... ∗ Z (n times) ∼= Fn.

(iii) Let X ⊆ R3 be the union of m lines through the origin. Consider the
homotopy:

ft(x) = (1− t)x+ t
x

|x|
.

Then ft : R3 −X → R3 −X defines S2 − {x1, x2, ..., x2m} as a deformation
retract of R3 − X, where x1, . . .x2m are the 2m points in the intersection
X ∩ S2. Therefore

π1(R3 −X) ∼= π1(S2 − {x1, x2, ..., x2m}).

S2 without k points is homeomorphic to R2 without k − 1 points, and this
space has the homotopy type of the wedge sum of k− 1 copies of S1. Hence:
π1(R3 − X) ∼= π1(S2 − {x1, x2, ..., x2m}) ∼= π1(R2 − {y1, y2, ..., y2m−1}) ∼=
π1(S1 ∨ ... ∨ S1) ∼= Z ∗ ... ∗ Z (2n− 1 times).

(2). (i) Two covering projections, pi : X i → X, i = 1, 2, are said to be
equivalent if there is a homeomorphism f : X1 → X2 such that p2 ◦ f = p1.

(ii) Given two covering projections p : E → B and p : E ′ → B′ with p(e0) =
p′(e′0) = b0, suppose f : E → E ′ is an equivalence such that f(e0) = e′0.
Then, since f is a homeomorphism, we have

f∗(π1(E, e0)) = π1(E
′.e′0).

Therefore,
p∗(π1(E, e0)) = p′∗(π1(E

′, e′0)).

Conversely, suppose

p∗(π1(E, e0)) = η−1p′∗(π1(E
′, e′0))η,

for some element η ∈ π1(B, b0). Let λ be a path in E ′ such that λ(0) = e′0,

[p′ ◦ λ] = η and ẽ′0 = λ(1).Then we have

[λ]−1π1(E
′, e′0)[λ] = π1(E

′, ẽ′0).



Therefore, it follows that

p′∗(π1(E
′, ẽ′0)) = η−1p∗(π1(E

′, e′0))η = p∗(π1(E, e0)).

By applying the lifting criterion, either way, we get maps f : E → E ′ and
g : E ′ → E such that p′ ◦ f = p and p ◦ g = p′ and f(e0) = ẽ′0, g(ẽ′0) = e0.

Now p′ ◦ f ◦ g = p and f ◦ g(ẽ′0) = ẽ′0. Therefore, by Unique Lifting Property,
we have f ◦ g = idE′ . Likewise, we see g ◦ f = idE. Therefore f (and g)
defines an equivalence of p and p′.

(iii) The subgroup of Z × Z generated by two elements (m, 0) and (0, n) is
isomorphic to Z×Z, so we might guess that the covering space is T = S1×S1

itself. By taking the covering map

z1 × z2 → zm1 × zn2 ,

we see that the generators corresponding to (1, 0) and (0, 1) in π1(T ) map to
m× 0 and 0× n, respectively. Thus this is the correct covering space.

(3). (i) Let p : X → X be a covering map. We call T : X → X a covering
transformation if (i) T is a homeomorphism and (ii) p = p ◦T . The set of all
covering transformations forms a group under function composition, which
is called the automorphism (Deck transformation) group Cov(X/X).

(ii) For [α] ∈ N(H) and ȳ ∈ E we define φ([α])(ȳ) as follows: choose any
continuous path f : [0, 1]→ E with f(0) = e0 and f(1) = ȳ. Let α̃ : [0, 1]→
E be the lift of α : [0, 1] → X with α̃(0) = e0 and let f ′ : [0, 1] → E be the
lift of p ◦ f : [0, 1]→ B with f ′(0) = α̃(1). We define

φ([α])(ȳ) = f ′(1).

We have to show that

(a) φ is well-defined;

(b) φ([α]) ∈ Cov(E/B);

(c) φ is a homomorphism;

(d) φ is onto;



(e) kerφ = H.

(a): We wish to show that the definition of φ is independent of the choice of
f . To this end, let g : [0, 1]→ E be another continuous path with g(0) = e0
and g(1) = ȳ. It is our goal to show that f ′(1) = g′(1). Put z̄ = α̃(1), then

[α̃]−1π1(E, e0)[α̃] = π1(E, z̄).

Applying p∗ to this equation, we get

[α]−1p∗(π1(E, e0))[α] = p∗(π1(E, z̄)).

However, by assumption,

[α]−1p∗(π1(E, e0))[α] = p∗(π1(E, e0)).

so that
p∗(π1(E, z̄)) = p∗(π1(E, e0)).

This means that the elements of π1(B, b0) which lift to loops at e0 are the
same as those which lift to loops at z̄. Consequently,

[p ◦ (f.g−1)] ∈ p∗(π1(E, e0)) = p∗(π1(E, z̄)).

In other words,
[p ◦ (f.g−1)] = [p ◦ γ]

for some γ : [0, 1] → E with γ(0) = γ(1) = z̄. From Unique Lifting Prop-
erty, we have that (p ◦ f)(p ◦ g−1) lifts to some loop at z̄. Since f ′ and g′ are
the unique lifts of p◦f and p◦g at z̄, respectively, we must have f ′(1) = g′(1).

(b): First of all note that, by definition, we have

p ◦ φ([α])(ȳ) = p(f ′(1)) = p(f(1)) = p(ȳ).

If N is an elementary neighborhood of y = p(ȳ) and U1 and U2 the path com-
ponents of p−1(N) containing ȳ and φ([α])(ȳ), respectively, we get φ([α])(U1) =
U2. To see this, all we have to do is choose the path f in the definition of
φ([α])(w̄) for w̄ ∈ U1 to always begin with the same path f running from
f(0) = e0 to f(1) = ȳ and concatenate it with a path h running from
h(0) = ȳ to h(1) = w̄ which stays in U1. This observation yields continuity
of φ([α]). Also, it is clear that φ([α]−1) is the inverse of φ([α]). In summary,



φ([α]) ∈ Cov(E/B).

(c): Let [α], [β] ∈ N(H) and ȳ ∈ E. Let α̃, β̃ : [0, 1]→ E be the lifts of the
paths, α, β : [0, 1]→ B with

α̃(0) = β̃(0) = eo,

respectively. Choose a path f : [0, 1] → E from f(0) = e0 to f(1) = ȳ. Let

f ′ be the lift of p ◦ f with f ′(0) = β̃(1). Then φ([α])(ȳ) = f ′(1). Let β̃′ be

the lift of p ◦ β̃ = β with
β̃′(0) = α̃(1).

Then α̃ · β̃′ is the lift of αβ : [0, 1]→ B which starts at e0. Let f ′′ be the lift
of p ◦ f with

f ′′(0) = α̃ · β̃′(1) = β̃′(1).

Then, by definition,

φ([α] ∗ [β])(ȳ) = φ([α · β])(ȳ) = f ′′(1).

On the other hand, β̃ · f ′′ is now the lift of p ◦ (β̃ · f ′) with begins at α̃(1), so
that

φ([α]) ◦ φ([β])(ȳ) = φ([α])(f ′(1)) = β̃′ · f ′′(1) = f ′′(1).

Hence,
φ([α] ∗ [β]) = φ([α]) ◦ φ([β])

and φ is indeed a homomorphism.

(d): Let T ∈ Cov(E/B). Choose any continuous path α̃ : [0, 1] → E with
α̃(0) = e0 and α̃(1) = T (e0). Put α = p ◦ α̃. Then

α(0) = p ◦ α̃(0) = p(e0) = b0

and
α(1) = p ◦ α̃(1) = p(T (e0)) = p(e0) = b0.

Therefore, [α] ∈ π1(B, b0). In fact, [α] ∈ N(H). To see why, first recall from
Part (a) above that

[α]−1p∗(π1(E, e0))[α] = p∗(π1(E, T (e0))). (1)



On the other hand, since T : E → E is a homeomorphism, we know that it
induces an isomorphism

T∗ : π1(E, e0)→ π1(E, T (e0)).

Consequently

p∗(π1(E, e0)) = (p ◦ T )∗(π1(E, e0)) = p∗(T∗(π1(E, e0))) = p∗(π1(E, T (e0))).
(2)

Combining Equations (1) and (2) we get

[α]−1p∗(π1(E, e0))[α] = p∗(π1(E, e0)),

which says that [α] ∈ N(H).
If now ȳ ∈ E and f : [0, 1] → E is any path with f(0) = e0 and f(1) = ȳ,
consider f ′ = T ◦ f . Since

p ◦ f ′ = p ◦ (T ◦ f) = (p ◦ T ) ◦ f = p ◦ f,

we see that f ′ is the lift of p ◦ f with f ′(0) = T ◦ f(0) = T (e0) = α̃(1).
Therfore,

φ([α])(ȳ) = f ′(1) = T (f(1)) = T (ȳ).

Hence, T = φ([α]), proving that φ is onto.

(e): Finally, φ([α]) = idE if and only if f(1) = f ′(1), which by unique path
lifting can only occur when f = f ′, that is, when α̃(0) = α̃(1). This is the
case precisely when α lifts to a loop at e0, i.e., when [α] ∈ p∗(π1(E, e0)) = H.
So, the kernel of φ equals H.

(iii) Consider the quotient map q : Sn → RPn. We show that q is a covering
projection. Let U1 be an open subset of Sn not containing a pair of anti-podal
points and

U2 = {−x/x ∈ U1}.
Then, q(U1) = q(U2). Denoting these images by U , we see that q−1(U) =
U1 ∪ U2 which is an open set in Sn and so U is open in RPn. Second, q
maps each of U1 and U2 bijectively onto U . To see that q maps each of U1

and U2 homeomorphically onto U , we merely have to show that q is an open
mapping. So let V1 be an open subset of U1 and V2 = {−x|x ∈ V1}. Then

q−1(q(V1)) = V1 ∪ V2



is open in Sn so that q(V1) is an open subset of RPn. Thus we have shown
that q restricted to each Uj is an open mapping and that suffices for a proof.

We now show that
Cov(Sn/RPn) ∼= Z2.

This follows from part (b) and using the facts that π1(Sn) = 1 and π1(RPn) =
Z2.

(4) (i) Let X be a topolological space, G ≤ Homeo(X) a group of homeo-
morphisms on X. G is said to act properly discontinuous (p.d.) on X if for
every x ∈ X, there is a neighborhood, Ux of x, such that gUx ∩ Ux = ∅ for
every g ∈ G with g 6= IdG.

(ii) We first show that π is an open map. Let U ⊂ X be open; we need to
show π(U) is open in X/G. Since X/G has the quotient topology, π(U) is
open in X/G if and only if π−1(π(U)) is open in X. Following the definition
of π, we have

π−1(π(U)) =
⋃
g∈G

gU

Since each g ∈ G is a homeomorphism of X, gU is open for every g, so
π−1(π(U)) is open in X. We now prove the ⇐ direction. The assumption is
that G acts p.d. on X. We need to show that π is a covering map. Toward
this end, let [x] ∈ X/G be fixed arbitrarily. Define U to be a neighborhood
of x, for some choice of x ∈ [x], witnessing the p.d.-ness of G’s action. The
following properties of π are easily checked:

• π(U) is a neighborhood of [x].

• {gU}g∈G is a disjoint, open decomposition of π−1(π(U)).

• π|gU is a continuous, open, surjective map.

It therefore remains to verify that π|gU is one-to-one. Toward this end, let x1,
x2 ∈ U such that π(gx1) = π(gx2). Then we have [x1] = [gx1] = [gx2] = [x2]
in X/G. So let g ∈ G such that x1 = gx2. Since we have x1 ∈ U and
gx2 ∈ gU , this implies U ∩ gU is nonempty, and thus g = IdG, and therefore
that gx1 = gx2. This concludes the proof of the ⇐ direction. To prove the
⇒ direction, we are assuming that π is a covering map, and must show that



the action of G on X is p.d. Let x ∈ X be arbitrary, and let V be a neigh-
borhood of π(x) which is evenly covered by π. Let tαUα witness this even
covering. Let α0 be such that x ∈ Uα. It is easily derived from the definition
of π that, for each α, there is g ∈ G such that gUα0 = Uα . Thus it suffices to
show that if gUα0 ∩ Uα0 is nonempty, then g = IdG. If y ∈ gUα0 ∩ Uα0 , then
we have π(y) = [y] = [g−1y] = π(g−1y), where y, g−1y are in Uα0 . So since
π|Uα0

is a homeomorphism and in particular injective, we have y = g−1y. In
other words, if gUα0 ∩ Uα0 is nonempty, then g has a fixed point. But since
π = π ◦ g for every g ∈ G, we have that g ∈ Cov(X/(X/G)), so in particular
g has no fixed points unless g = IdG. This concludes the proof of the ⇒
direction of the if-and-only-if part of the theorem.

We now prove the final two statements of the theorem, starting with the
implication that, if π is a covering map, then G = Cov(X/(X/G)). We
have already shown (in the preceding paragraph) that G ≤ Cov(X/(X/G)),
so it suffices to show that Cov(X/(X/G)) ≤ G. Toward this end, let
h ∈ Cov(X/(X/G)), and let x ∈ X be any point. Since we have [h(x)] =
π(h(x)) = π(x) = [x], it follows that there is g ∈ G with gx = h(x). But
g ∈ Cov(X/(X/G)), so g−1h fixes x, and thus g−1h = Id, so h = g, and in
particular h ∈ G. Thus Cov(X/(X/G)) = G when π is a covering map.

To prove that π is a regular covering, we know that it suffices to show that
G acts transitively on the fibers of π. So let x, y ∈ π−1([x]). Then [x] = [y],
so x = gy for some g ∈ G, proving transitivity.


